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Part 2 - Applications in Wireless Networks and Automotive Radars is a separate talk.
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Overview of Today's Talk

1. Context
2. Motivation and History of Line Processes
3. Binomial Line Processes

4. Binomial Line Cox Process

5. Meta Distribution of the SINR with BLCP Nodes
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Context
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Modern Networks are Increasingly AdHoc
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(b)

Figure: BS discovery at (a) 11ISc Campus and (b) ISI Bangalore Campus. Source: OpenCelllD.
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BLCP

Modern Networks are Increasingly AdHoc
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(b)

Figure: BS discovery at (a) 1ISc Campus and (b) ISI Bangalore Campus. Source: OpenCelllD.

® Are these two scenarios to be studied separately?
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Solution - Stochastic Networks and Point Processes
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Next-Generation Wireless Deployment

(b) :

Figure: (a) Example first-generation mm-Wave deployment. (b) Verizon's small cell deployment near stadiums.
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Other examples

New York City has already deployed such small cells focusing on high-speed connectivity
for pedestrian users.

South Korea: SK Telecom, 28GHz, outdoor pedestrian.
Taiwan: Nokia and CHT.
Verizon deployed 5G (with mm-wave) on street lights in Sacramento.

AT&T deployed 5G (with mm-wave) on smart lamp-posts in San Jose.
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Other examples

New York City has already deployed such small cells focusing on high-speed connectivity
for pedestrian users.

South Korea: SK Telecom, 28GHz, outdoor pedestrian.
Taiwan: Nokia and CHT.
Verizon deployed 5G (with mm-wave) on street lights in Sacramento.

AT&T deployed 5G (with mm-wave) on smart lamp-posts in San Jose.
Ok, so deployment along streets. What else?

BLcP Jne 8,2024
Coverage Footprint from a 5G Lamppost

Figure: Coverage of a lamp-post mm-wave small cell in San Jose.
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e Movement of vehicular nodes.
e Autonomous robots movements:

® |nspecting underground pipelines.
® Movement in warehouses.

® Underground metro/railway system.

'Will be made rigorous in a moment.
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® |nspecting underground pipelines.
® Movement in warehouses.

Underground metro/railway system.
Network of rivers.
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Networks on Lines - Other Examples

Movement of vehicular nodes.

Autonomous robots movements:

® |nspecting underground pipelines.
® Movement in warehouses.

® Underground metro/railway system.
e Network of rivers.

Can be modeled, studied, and characterized using line processes! (one candidate): a random
collection of lines in, e.g., Euclidean space (e.g., a plane).
Let's look at some history...

'Will be made rigorous in a moment.
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History of Line Process Research

1964
P. I. Richards

* Averages of random polygons

1945

1967
S A Goudsmit 1964 i
First paper on R“S“f‘ \hl'rs
line processes Fundamental

properties of PLP

1970

R. Davidson
Properties of stationary
line processes

Spectral analy
of line processes

1972
Santalo & Janez
Random lines in

hyperbolic planes

1980

1990 Cowan
1997 S. Peckham Mosaic Processes
Gloaguen & Schmidt 1 Applications in
Analysis of wired systems S. Peckham studying rivers
1997 Applications in image
Baccelli processing
PLP for modeling road systems
2012
Morlot More accurate 2022
Wireless network analysis models for urban Chetlur, Dhillon
2018 2020 road networks Bridging the gap between
Chetlur, Dhillon et al. academia-industry-reality for C-V2X

1 Exhaustive analysis of vehicular 2020-22
network g PLP Jevaraj and Haenggi
2 L1 distance measures of MLCP

[A part of the illustration is from Prof. Dhillon's book/talk.]
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Candidate Models for Emulating Streets

13/62

BLcP une 4, 2024
Candidate Models for Emulating Streets

Poisson Delaunay Triangulation Poisson Lilypond Model

Manhattan Line Process Poisson Line Process

Poisson Stick Process

13/62
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Some Observations

® Homogeneity — characterization is motion-invariant - one can study the network from
the perspective of a single point, e.g., at the origin.

® From the perspective of a single city, the street networks are inhomogeneous - denser
streets in the city center, not so much in suburbs.

® Solutions need to be adaptive -

® MAC protocols should adapt based on the location.
® Deployment planning must take into account the location - e.g., where is the nearest eV

charging point? nearest bus stop?
® V2X load is directly dependent on the length of streets in a coverage area; load-balancing

and cell-breathing need to be adaptive.
e ...
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Emulating Non-Homogeneous Streets

@ )

Figure: (a) PVT and (b) PVT + PLT models for fitting for streets of Lyon 2. For a PVT, the model parameter
is the density of the underlying Poisson point process (PPP).

2C. Gloaguen, “Modelisation macroscopique geometrique des reseaux d'acces en telecommunication,” Presentation at Soci “et e de Math “ematiques
Appliqu “ees et Industrielles. Link: http://smai.emath.fr/spip/IMG/ppt, 2010 15/62
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Line Process - Construction
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Line Process - Construction
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Line Process - Construction
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Binomial Line Process - Construction
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® Key: Fixed number of points (ng), uniformly distributed in a closed compact set
D4 [-R, R] x [0,7).
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BLP - Definition

Binomial Line Process (BLP)

A binomial line process (BLP) L is a collection of ng lines in the two-dimensional Euclidean
plane. Formally,

LCQ= U {(x,y) € R?: xcosf + ysinf = r}. (1)
re[—R,R],0€[0,m)
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Binomial Line Process (BLP)

A BLP L is a collection of ng lines in the two-dimensional Euclidean plane. Formally,

LCQ= U {(x,y) € R?: xcosf + ysinf = r}. (1)
re[—R,R],0€[0,m)

e We will call D the generating set or the domain set of £, and

® A point (0;,r;) € D, corresponding to a line L; € L, the generating point of L;.
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BLP - Definition

Binomial Line Process (BLP)

A BLP L is a collection of ng lines in the two-dimensional Euclidean plane. Formally,

LCQ= U {(x,y) € R?: xcosf + ysind = r}. (1)
re[—R,R],0€[0,m)

e We will call D the generating set or the domain set of £, and
® A point (i, ri) € D, corresponding to a line L; € L, the generating point of L;.
e Generating points form a BPP in D.

BLCP June 4, 2024
Instance Visualization
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(a) (b)

Figure: (a) A BLP with ng = 10 and R = 100, (b) A realization of a PLP conditioned on 10 lines generated in
the window of interest, and (c) A PLP whose underlying PPP has intensity 72 with ng = 10 and R = 100.
Note: Here R is the radius of the circle in which BLP lines are generated.
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Non-stationarity

® BLP is a non-stationary process.

e — the statistics of the BLP cannot be characterized from the perspective of a single
typical point located, say, at the origin.

® However, isotropic — the properties as seen from a point depends only on its distance
from the origin and not its orientation.
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Non-stationarity

® BLP is a non-stationary process.

e — the statistics of the BLP cannot be characterized from the perspective of a single

typical point located, say, at the origin.

® However, isotropic — the properties as seen from a point depends only on its distance

from the origin and not its orientation.

® Accordingly, without loss of generality, let us consider a test point located at (0, rp).

Gourab Ghatak (IIT Delhi)
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Distance to the Nearest BLP Line

Figure: lllustration of the construction of a BLP and intersecting lines on B((0, r), t).

Domain Bands

o = 100.t = 25)

-100+

-150
0

wpi b

()

BLCP June 4, 2024

(b)

Figure: (a) lllustration of the domain bands for a PLP and a BLP with R = 100. (b) Domain bands for different
values of t and rp. Here R = 100. Note that when rp + t < R, the domain bands for PLP and BLP coincide.
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Area of the Domain Band

The area of the domain band Dg(ro, t) for a BLP is

(Orrt: forn+t<R

2mt — 24 /1 - ('*ij)2 +2(R-t)cos (B=);  form+t>Randr—t<R
O ane 2o (i (55 - i (5)) w2t 0 (552)

| —2(R+ t)cos™1 (&;‘b'—‘) . forp—t>R.
)
v
BLCP

June 4, 2024

Distance to the nearest street?

Corollary
[Void Probability] The probability that no line of the BLP intersects with B((0, ro), t) is

Vour (. B((0, ), 1)) = (1- 200%™

where, ng is the number of lines of the BLP L and Ay, is area of the domain bands.
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Distance to the nearest street?

Corollary
[Void Probability] The probability that no line of the BLP intersects with B((0, o), t) is

Viur(m, B0, ), 1) = (1- 220"

where, ng is the number of lines of the BLP L and Ay, is area of the domain bands.

The CDF of the distance to the nearest line of the BLP from a test point at (0, ro) is,

Fa(t) = 1 —Verp(ns, B((0, n), t)).

Gourab Ghatak (IIT Delhi) BLCP
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Line Length Density

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Line Length Density

Definition

The line length measure is
R(S)=nsE(|LNS|1), SCR?

where | - |1 is the Lebesgue measure in one dimension and L is a line of the BLP. The
corresponding radial density is

(1) = lim ZBU©:0), 7 + W\ B(0,0), 1))
14 - u—0 T (2U L U2) o
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Line Length Density

Definition

The line length measure is
R(S)=nmsE(|LNS)1), SCR?

where | - |1 is the Lebesgue measure in one dimension and L is a line of the BLP. The
corresponding radial density is

R(B((0,0), r + u) \ B((0,0), r)) .

plr) = lllll»no 7 (2u + u?)

The line length measure follows by integrating p(r), i.e.,
R(S) = [ ollxl) dx, S c B2
S

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024
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Line Length Density

For a BLP generated by ng lines within a disk of radius R,

i ifr<
p(r)={2R’ R o

28 arcsin (B) ifr> R.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Line Length Density

For a BLP generated by ng lines within a disk of radius R,

N I <
p(r)= %’R, ) < lff < R
e aresin (B) ifr> R.

(@) (b)
Figure: (a) Ratio of the line length measure to the area in concentric annuli of equal width w = 2. Here,
R =50. (b) Line length density p(r) for R = 50 and ng = 10.
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Intersection Density

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

17 of 46 11-12-2024, 17:54



Firefox

Intersection Density

The intersection density for a PLP with density Appp is

pp(APPP) = TAPpp-

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Intersection Density

The intersection density for a PLP with density Appp is

pP(APPP) = TAppp.

Theorem

The radial intersection density at a distance r from the origin for a BLP generated by ng lines
within a disk of radius R is

ng(ng—1) c
) ifr S R,
px(f)={ AR

—2—2—”'2;""3?_:) (2r arcsin (8) — 2R\/r2 — R2) ifr>R.
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Radial Intersection Density: Proof

Let S = B((0,0),t), and consider Ly generated at (0, ry) where 0 < rp < min{t, R}.
® First, we determine the domain band Dy corresponding to the intersection on Lo
For a 0, the range of r that correspond to the domain band is,

max{—R, (rocost9— \/ 12— rgsinO)} < r; < min {R, <r0c050+ /12— rgsin())}.

For t > R, the domain band gets clipped to R (upper) and —R (lower) limits

t, if t <R,
2 (42 aresin (R 2 RY_
Ap, (t) = { 7|t arcsin (7) +2R?arccos (F)
2 — R2) if t > R.
Bice Jone 4,202

18 of 46

about:blank

11-12-2024, 17:54



Firefox

Radial Intersection Density: Proof

e Accordingly, the probability that a line intersects Ly within S is obtained as
Po(t) = 2O
x( )_ 27 min{t,R}"
® Now, let us assume that k lines are generated in S. Each of these intersects Ly with
probability P, (t). As a result, the average number of intersections on Ly within S from
the k lines is

k
N[ . ik
N_jizoj(j>(Px(t|t§R))f(1 Px(t|t < R) 5

BLcP ne 8,2024
Radial Intersection Density: Proof

Finally, in order to determine the average number of intersections on all the lines within S, we
take the expectation over the number of lines generated within S. This is evaluated as

ng—1
_ ng T kt+1 t\m—k-1 [ 1
M= (P (R) T (-R)"T 5 ke ;
k=0 « = ~ N~ M ~~
T T2 T3

ng(ng — 2
im0

&

3)
Similarly, for t > R

nB—l

No =" kaPy(t|t>R)

k1=0

_ m(ns —1) X (t2 arcsin <§) + 2R?arccos (’—:) — RV1t?2— R2>. (4)

2rR?

BLcP June 4,2024
Intersection Density

3 x107*

0 20 40 60 80 100
r

Figure: Intersection density for R = 50 and ng = 10.
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Highlights of the Properties

® The line length density as well as the density of intersections remain constant at 53 for
r < R and then decreases as O(1/r) as r — oo.
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Highlights of the Properties

® The line length density as well as the density of intersections remain constant at 55 for
r < R and then decreases as O(1/r) as r — oc.

® QOther results skipped: distance to the nearest intersection.
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BLCP - Construction

® On each L; of L, define an independent 1D PPP ®; with intensity A.
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BLCP - Construction

® On each L; of L, define an independent 1D PPP ®; with intensity A.

® A BLCP 9, is U®;.

® Thus the BLCP is a doubly-stochastic or Cox process of random points defined on
random lines.
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BLCP - Construction

® On each L; of L, define an independent 1D PPP ®; with intensity A.

® A BLCP 9, is U®;.

® Thus the BLCP is a doubly-stochastic or Cox process of random points defined on
random lines.

BLcP ne 4,2024
Nearest BLCP Point - Chord Length

150

100 - e .

-100 R

-150 :
-100 0 100 200
z

Figure: lllustration of the chord length C’(x, t, rs,04).

BLcP June 4,2024
Void Probability

The probability that the disk B((0, o), t) contains no points of ® is given by
g
1
Vaar (m, B(0,1),0) = | 577 [[ ew(-AC(0,0) arao ©
—
D(ro,t) Vppp(Chord Length)
where,
2 _ —_ r)2. > —
C(6,r) = {2\/t (ocos@ —r)?, t> |rof:os&9 r|, (6)
0; otherwise,
is the length of the chord created by a line corresponding to (0, r) € D in the disk B((0, r), t).}

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024
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Void Probability

[Distance Distribution] Following the void probability, the distance distribution of the nearest
BLCP point from the test point (0, ro) is

Fa,(t) =1 — Vpicp (n, B((0, ro), t)) .
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Void Probability

[Distance Distribution] Following the void probability, the distance distribution of the nearest
BLCP point from the test point (0, ro) is

Fa,(t) =1 —Vpicp (nB, B((0, ), t)) -

From a wireless network perspective where the locations of the APs are modeled as points of a
BLCP, the above result characterizes the distance distribution to the nearest AP.

BLCP June 8, 2024
Palm Perspective of the BLCP
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Palm Perspective of the BLCP

For a BLCP ® defined on a BLP P with ng lines, we have

P(® €Y |x€d)=P(®p,_1UdUI{x}€Y), ©)

where ® is a 1D PPP on a randomly oriented line that passes through x.
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For a BLCP © defined on a BLP P with ng lines, we have

P@eY|xe®d)=P(®p-1USU{x}eY), (7)

where ® is a 1D PPP on a randomly oriented line that passes through x.

Necessary to characterize the statistics of the performance metrics conditioned on an event
that a node, e.g., a transmitter or an AP is located at a given point.
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For a BLCP ® defined on a BLP P with ng lines, we have

P(® €Y |x€d)=P(®p,_1UdUI{x}€Y), ©)

where ® is a 1D PPP on a randomly oriented line that passes through x.

Necessary to characterize the statistics of the performance metrics conditioned on an event
that a node, e.g., a transmitter or an AP is located at a given point.

® Consider a network - APs ~ BLCP.
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Palm Perspective of the BLCP

For a BLCP ® defined on a BLP P with ng lines, we have

P(® €Y |x€d)=P(®p,_1UdUI{x}€Y), ©)

where ® is a 1D PPP on a randomly oriented line that passes through x.

Necessary to characterize the statistics of the performance metrics conditioned on an event
that a node, e.g., a transmitter or an AP is located at a given point.

® Consider a network - APs ~ BLCP.

e |f a Rx at the origin associates with a Tx located at x, then the interfering APs are
located not only in the other ng — 1 lines but also on a line necessarily passing through x.

Gourab Ghatak (IIT Delhi) BLCP
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Probability Generating Functional - Definitions

Definition

The PGFL of a point process ® evaluated for a function v is defined mathematically as the
Laplace functional of —log v and is calculated as E [[],cq #(X)]-
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Definition

The PGFL of a point process ® evaluated for a function v is defined mathematically as the
Laplace functional of —log and is calculated as E [[], .o ¥(x)].

Characterizes the behavior of any random point function

® Given pollution sources and diffusion models, the expected intensity of pollution at a
location.

e Given BS powers, the received power and QoS, etc at a location.

e Given stochastic charge locations, what is the electric field at a location?

Gourab Ghatak (IIT Delhi) BLCP

June 4, 2024
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Probability Generating Functional - Definitions

Definition

The PGFL of a point process ® evaluated for a function v is defined mathematically as the
Laplace functional of —logv and is calculated as E [[], .o ¥(x)].

Characterizes the behavior of any random point function

® Given pollution sources and diffusion models, the expected intensity of pollution at a
location.

e Given BS powers, the received power and QoS, etc at a location.
e Given stochastic charge locations, what is the electric field at a location?

For a PPP
E| [[ v®| =ex (— / 1- u(x)/\(dx)) (8)
xEPppp R?

BLCP June 4, 2024

Probability Generating Functional

For a particular ry and dy,

® a line is intersecting if |rgcos @ — r| > di and non-intersecting otherwise.
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Probability Generating Functional

For a particular ry and dj,

® a line is intersecting if |rpcos @ — r| > di and non-intersecting otherwise.

Thus, the conditional PGFL of the intersecting and non-intersecting lines (given the nearest
BLCP is at d;) are

1 o0
Gi(ro, di =—//ex —2/\/ 1—-f 2 4 (rgcos@ —r)2 ) dy | drdf,
I( 0 1) AD(’O) dl) p ( vV dl_(’DCOS()—r)z (\/y ( 0 ) ) y)

Di(0,d1)
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Probability Generating Functional

For a particular ry and dj,

® a line is intersecting if |rpcos @ — r| > di and non-intersecting otherwise.

Thus, the conditional PGFL of the intersecting and non-intersecting lines (given the nearest
BLCP is at d;) are

1 o0
Gi(rp, dy) = ——— exp [ —2\ 1—-f 2 4 (rgcos@ —r)2 ) dy | drdf,
I( 0 1) AD(’Oa dl) // P ( /,/df—(rocos()—r)z (\/y ( ° ) ) y) o

Di(0,d1)
1 o0
G dy) = =2 1-f 2 0 —r)?) dy)drdoé.
ni(ro, d1) (7R — An(ro, b)) // exp( /0 (\/y + (rocos@ — r) ) }’><f<
D\Dxi(0,d1)
9)
e June 8, 2024

Probability Generating Functional

The line containing the nearest point intersects the disk B((0,0), d1) almost surely. Whereas,
the other ng — 1 lines may or may not intersect. Accordingly,
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Probability Generating Functional

The line containing the nearest point intersects the disk B((0,0), d1) almost surely. Whereas,
the other ng — 1 lines may or may not intersect. Accordingly,

(a) g -1 Ap(ro, di) "
a - 7
(0 F) 2 Gt ) 3= (™, )L(%  Gi(o, ) )
Ty ’;‘rz
Ap(ro, d ms—n—1
X <(1 — %) X GNI(fo,d1)> }
. |
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The line containing the nearest point intersects the disk B((0,0), d1) almost surely. Whereas,
the other ng — 1 lines may or may not intersect. Accordingly,
np—1 n
ng—1 Ap(ry, d
G0, F(9) @ Gi(ro, ch) > ( 5 ) L(% x Gl(ro,dl))
Tl ’}rz
Ap(ro, d s —n—1
X <(1 — %) X GNI(fo,d1)> }
~ |
® T3 — line containing the nearest point.
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np—1 n
(a) ng—1 Ap(r, di)
G(rn, () = Gi(ro, ch) nz:; ( . ) ( h X Gilro, i)
1 ) T
Ap(ro, d memnt
(-2 s cutn )™ ]
> |
® T; — line containing the nearest point.
® T, — the probability that a set of n lines intersect the disk and the conditional PGFL given that
the lines intersect the disk.
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Probability Generating Functional
The line containing the nearest point intersects the disk B((0,0), d1) almost surely. Whereas,
the other ng — 1 lines may or may not intersect. Accordingly,
np—1 n
ng—1 Ap(ry, d
o) 2 Gty 3~ (™, ) L(% x Gl ) )
Tl T2
Ap(ro, d s —n—1
X <(1 — %) X GNI(fo,d1)> }
~ |
® T3 — line containing the nearest point.
® T, — the probability that a set of n lines intersect the disk and the conditional PGFL given that
the lines intersect the disk.
® T3 — corresponds to the probability that a set of ng — n — 1 lines do not intersect the disk and
the conditional PGFL given that the lines do not intersect the disk.
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What could we characterize

e Distance to the nearest street as we move away from the city center.
® Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).
® Scaling for the density of streets and intersections as we move away from the city center.
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e Distance to the nearest street as we move away from the city center.

® Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).

® Scaling for the density of streets and intersections as we move away from the city center.

® PGFL - characterizes the behavior of any random point function.

® Currently, we are performing a data-driven evaluation of the accuracy of different models.
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What could we characterize

Distance to the nearest street as we move away from the city center.

® Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).

Scaling for the density of streets and intersections as we move away from the city center.

PGFL - characterizes the behavior of any random point function.

e Currently, we are performing a data-driven evaluation of the accuracy of different models.

Let's look at an application with meta distributions.
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® For a random variable, Z, E[Z] is the mean of Z.
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® For a random variable, Z, E[Z] is the mean of Z.
® Useful but not a complete picture/description about Z.
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Refresher On Indicators and Conditional Expectations

® For a random variable, Z, E[Z] is the mean of Z.
® Useful but not a complete picture/description about Z.
® |ntroduce z to compare against Z

® Forms the family of random variables 1 (Z > z).
® The mean of this family, E[1 (Z > z)] gives the distribution of Z.
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® For a random variable, Z, E[Z] is the mean of Z.

® Useful but not a complete picture/description about Z.
® |ntroduce z to compare against Z

® Forms the family of random variables 1 (Z > z).

® The mean of this family, E[1 (Z > z)] gives the distribution of Z.
® |f Z does not depend on any other randomness, the above provides a complete picture of Z.
® The probability of any event can be expressed by adding or subtracting these elementary
probabilities.
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Refresher On Indicators and Conditional Expectations

® For a random variable, Z, E[Z] is the mean of Z.
® Useful but not a complete picture/description about Z.
® |ntroduce z to compare against Z

® Forms the family of random variables 1 (Z > z).

The mean of this family, E[1 (Z > z)] gives the distribution of Z.

If Z does not depend on any other randomness, the above provides a complete picture of Z.
The probability of any event can be expressed by adding or subtracting these elementary
probabilities.

® However, if Z is a function of other sources of randomness, then E [1 (Z > z)] does not
reveal how the statistics of Z depend on those of the individual random elements.
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Meta-Distributions

® Let us take the example of Z = f(X, Y) where X and Y are independent.

® Then, to discern how X and Y individually affect Z, we need to add a second parameter,
say x, to extend the distribution to the meta distribution:

Fizivy(z,x) =E[L(E[L(Z > 2)|Y] > x)] (10)
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Meta-Distributions

® Let us take the example of Z = f(X, Y) where X and Y are independent.

® Then, to discern how X and Y individually affect Z, we need to add a second parameter,
say x, to extend the distribution to the meta distribution:

Fizivy(z,x) = E[L(E[L(Z > 2)|Y] > x)] (10)

or
I:'[[Zly](z,x) =P(P(Z > z|Y) > x) (11)
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Meta-Distributions

® Let us take the example of Z = f(X, Y) where X and Y are independent.

® Then, to discern how X and Y individually affect Z, we need to add a second parameter,
say x, to extend the distribution to the meta distribution:

Fiziv)(z,x) =E[L(E[L(Z > 2)|Y] > x)] (10)

Fizivi(z,x) =P(B(Z > 2|Y) > x) (11)

® Hence the meta distribution (MD) is defined by first conditioning on part of the
randomness.
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Meta-Distributions

® Let us take the example of Z = f(X, Y) where X and Y are independent.

® Then, to discern how X and Y individually affect Z, we need to add a second parameter,
say x, to extend the distribution to the meta distribution:

Fizivy(z,x) =E[L(E[L(Z > 2)|Y] > x)] (10)

Fizivi(z,x) =P(P(Z > z]Y) > x) (11)

® Hence the meta distribution (MD) is defined by first conditioning on part of the

randomness.
® |t has two parameters, the distribution has one parameter, and the average has zero
parameters.
BLcP June 4, 2024
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Natural Progression and Back

mean

cedf El(Z > z2)
Ex1 \
wdd 2 \, w [ dz
MD | EL(ExL(Z >z)>2) |

Figure: Going back and forth between mean, CCDF, and MD.
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Natural Progression and Back

mean

cedf El(Z > z)
Ex1 \ .
add = \\, w fdl
MD | EL(Ex1(Z >z)>2) |

Figure: Going back and forth between mean, CCDF, and MD.

Let U=P(Z > z|Y). Then, the mean of U is the distribution of Z and the distribution of U
is the MD.
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Example

Let us consider

X
ZZV

where X ~ exponential(Ax) and Y ~ exponential(Ay).
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Let us consider
X
z==
Y
where X ~ exponential(Ax) and Y ~ exponential(Ay).
° P(Z > z)?
Ky
Zpx + py
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Example
Let us consider
X
Z==
Y
where X ~ exponential(Ax) and Y ~ exponential(Ay).
* P(Z>z)?
Ky
Zpx + py
* Fizivy(z,x)?
By
1 — x2ex (12)
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Example in a Wireless Network
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Example in a Wireless Network

‘ \ / ]

157 \\ / [
. a % J |
‘ \ / !
05 ~—_ j/\\ %
0 x |
x
05 ~_ P _— |

0 05 1 15 2

e PPP = nearest BS at distance at V'Y where, Y ~ exponential (7).
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Example in a Wireless Network

e PPP — nearest BS at distance at /Y where, Y ~ exponential (7).
e Fading = Rx power ~ exponential (1).
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Example in a Wireless Network

1 15 2

e PPP = nearest BS at distance at V'Y where, Y ~ exponential (7).
e Fading = Rx power ~ exponential (1).
® Rx power Z = é
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Example in a Wireless Network

Ergodicity = Let’s talk about one realization (with A = 1) and ask P(Z > 1|®)?
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Example in a Wireless Network

Ergodicity == Let’s talk about one realization (with A = 1) and ask P(Z > 1|®)?
\sl0% 075 087 300 080 0.
83 pI6-Pea_p78

)9.63 X 96 0.62
05

)

o

.82
-0

o

F,pes )?57 )?79

_| 5

)

BLcP -
Example in a Wireless Network

® Histogram of all the user’s probabilities?
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® Histogram of all the user’s probabilities?
® Cannot be answered by merely looking at the ccdf of Z.

® In fact, P(Z > 1) = {7 ~ 0.76 — average of all the numbers.
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Example in a Wireless Network

® Histogram of all the user’s probabilities?

® Cannot be answered by merely looking at the ccdf of Z.
® In fact, P(Z > 1) = {7 =~ 0.76 — average of all the numbers.

® To know their distribution, we need to consult the MD.
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® Histogram of all the user's probabilities?

® Cannot be answered by merely looking at the ccdf of Z.

® In fact, P(Z > 1) = 17 ~ 0.76 — average of all the numbers.
® To know their distribution, we need to consult the MD.

® |n contrast, without the MD, we have no information about the disparity between the
users.
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Example in a Wireless Network

® Histogram of all the user’s probabilities?

® Cannot be answered by merely looking at the ccdf of Z.

® In fact, P(Z > 1) = {7 ~ 0.76 — average of all the numbers.

® To know their distribution, we need to consult the MD.

® |n contrast, without the MD, we have no information about the disparity between the
users.

® Their personal probabilities could all be well concentrated around 0.76, or some could
have probabilities near 0 and others near 1.

® Only the MD can reveal the performance of user percentiles, such as the “5% user”
performance, which is the performance that 95% of the users achieve but 5% do not.
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Let's return to BLCP - SINR Model

e ® be a point process, the signal-to-interference-plus-noise ratio (SINR) &(rp) is

ollxal|-hy
n) = , 13
) = T 8 S o X (13)

&o is a constant that takes into account the transmit power, AWGN noise, path-loss
constant, as well as the transmit and receive antenna gains.

For ease of notation, let us represent ||x;|| by d.
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Let's return to BLCP - SINR Model

e ® be a point process, the SINR &(rp) is

ollxal|-hy
n) = , 13
) = T S con g NI e (13)

&o is a constant that takes into account the transmit power, AWGN noise, path-loss
constant, as well as the transmit and receive antenna gains.

For ease of notation, let us represent ||x;|| by d.

Furthermore, let us assume ALOHA (p).

BLCP June 4, 2024
Conditional Success Probability
The conditional success probability, i.e.,
Ps(7y) = P(¢(r0) = |®)
is a random variable due to the random .
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Conditional Success Probability
The conditional success probability, i.e.,
Ps(v) = P(&(r0) = v|®)
is a random variable due to the random .
Its CCDF, called the meta distribution of the SINR, is given as
Pu(, B) =P (Ps(v) = B) =P (P(&(r0) = 7I|®) = B). (14)
which is a function of two parameters vy > 0and 0 < 3 < 1.
BLCP June 4, 2024
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Conditional Success Probability
Let the set of locations of the interfering nodes be denoted by C C @'.

bodv “hy
1+ &Y veor xdx “1(x € C)

Ps(7)=ﬂ”(£(ro)27|¢)=ﬂ’l 27|¢’]

—P [hl > v+ ’on Exew' hxdx_al(x € C)] (—i) E, |:exp (—7 — 750 ZXGO' hxdx—al(x c C))]
Sody © ) §od; *
_ _ , hyd—e
— exp < Z(,)Eh, [exp ( 760 Ccor Iudh "1(x € C))]
&od,; £od;
- —Wﬁod{”‘hz>
= &xp — PEn, exp (—_a +1-p
(£0d1 ) (XI;OI' fodl
(&) ( —y ) p
= &p —a — + 1-— Pl -
od (XI;,I, 1+ -“1;':—0 )
1
B .
Moments

® In general, directly deriving the distribution of the random variable Ps(7y) is most likely

impossible.
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Moments

® In general, directly deriving the distribution of the random variable Pg(y) is most likely
impossible.

® The standard approach to circumvent this challenge is by first deriving its moments and
then transforming them to the distribution.
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Moments

® In general, directly deriving the distribution of the random variable Pg(y) is most likely
impossible.

® The standard approach to circumvent this challenge is by first deriving its moments and
then transforming them to the distribution.

® Moments reveal key features:
® First moment: M; = Eq¢ [Ps(y)] — standard success probability.

e _1'"" moment: M_; = Eo [ﬁ] —» mean local delay.

® Similarly, variance etc.
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First Moment in a BLCP
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o0sll PPP 5 //' .
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(a) (b)
Figure: (a) Success probability with respect to ro. Here R = 50. (b) E [%21] with respect to ro.
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Figure: (a) Mean local delay with respect to the transmit probability for different values of R and A. Here,
ro = 0. (b) Successful transmission density. o

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

44 of 46 11-12-2024, 17:54



Firefox

45 of 46

Optimal Access Probability
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Figure: (a) Optimal transmit probability for minimizing the mean local delay. (b) SINR meta distribution.
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of network properties - success probability, mean local delay etc.
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Summary and Conclusions
® BLP and BLCP: New line process and Cox models that take into account the
non-homogeneity of lines in a Euclidean plane.
® Meta-distributions - fine-grained insight into the network; unified framework for a variety
of network properties - success probability, mean local delay etc.
® Inhomogeneity in the street network results in the adaptation of optimal wireless protocols
- Tx probability, Load-balancing, automotive radar, etc.
® Rigorously studied in Part 2.
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Summary and Conclusions
® BLP and BLCP: New line process and Cox models that take into account the
non-homogeneity of lines in a Euclidean plane.
® Meta-distributions - fine-grained insight into the network; unified framework for a variety
of network properties - success probability, mean local delay etc.
® Inhomogeneity in the street network results in the adaptation of optimal wireless protocols
- Tx probability, Load-balancing, automotive radar, etc.
® Rigorously studied in Part 2.
® Questions:
® How accurate is BLP/BLCP? - Working on it.
® Nearest point in the L; sense? Percolation questions.
® How to integrate the BLP model with existing street models?
BLCP June 4, 2024

Thanks!

Questions?
Please reach out: gghatak®ee.iitd.ac.in
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