Binomial Line Cox Processes

This talk: Part 1 - Characterization and Meta-Distributions

Gourab Ghatak

Department of Electrical Engineering IIT Delhi

June 4, 2024

Part 2 - Applications in Wireless Networks and Automotive Radars is a separate talk.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Acknowledgements

- Joint work with Md. Taha Shah (Ph.D. student at IIT Delhi) and Martin Haenggi (EE, University of Notre Dame).
- Thanks to Maruti-Suzuki India Limited for supporting a part of this work.
- The talk (Part 1) is derived from the following three papers:
 - G. Ghatak, Binomial Line Processes: Distance Distributions, IEEE Transactions on Vehicular Technology, doi: 10.1109/TVT.2021.3134834.
 - M. T. Shah, et al. Analyzing Wireless Networks using Binomial Line Cox Processes in the IEEE WiOpt 2023 Workshop on Spatial Stochastic Models for Wireless Networks - SpaSWiN.
 - Md. T. Shah, et al. Binomial Line Cox Processes: Statistical Characterization and Applications in Wireless Network Analysis, IEEE Transactions on Wireless Communication (accepted, May 2024).

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Overview of Today's Talk

- 1. Context
- 2. Motivation and History of Line Processes
- 3. Binomial Line Processes
- 4. Binomial Line Cox Process
- 5. Meta Distribution of the SINR with BLCP Nodes

3/62
Gourab Ghatak (IIT Delhi)
BLCP
June 4, 2024

Context

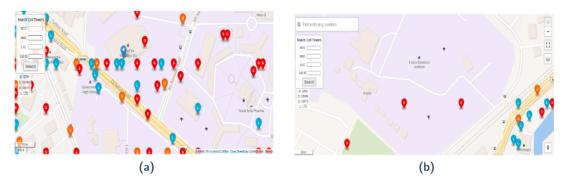


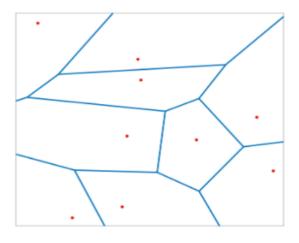
Figure: BS discovery at (a) IISc Campus and (b) ISI Bangalore Campus. Source: OpenCellID.

Figure: BS discovery at (a) IISc Campus and (b) ISI Bangalore Campus. Source: OpenCellID.

Are these two scenarios to be studied separately?

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Solution - Stochastic Networks and Point Processes



Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

6/62

Next-Generation Wireless Deployment

Figure: (a) Example first-generation mm-Wave deployment. (b) Verizon's small cell deployment near stadiums.

Gourab Gnatak (III Deini)

BLCP

June 4, 2024

Other examples

- New York City has already deployed such small cells focusing on high-speed connectivity for pedestrian users.
- South Korea: SK Telecom, 28GHz, outdoor pedestrian.
- Taiwan: Nokia and CHT.
- Verizon deployed 5G (with mm-wave) on street lights in Sacramento.
- AT&T deployed 5G (with mm-wave) on smart lamp-posts in San Jose.

June 4, 2024

8/62

Gourab Ghatak (IIT Delhi)

LCP

Other examples

- New York City has already deployed such small cells focusing on high-speed connectivity for pedestrian users.
- South Korea: SK Telecom, 28GHz, outdoor pedestrian.
- Taiwan: Nokia and CHT.
- Verizon deployed 5G (with mm-wave) on street lights in Sacramento.
- AT&T deployed 5G (with mm-wave) on smart lamp-posts in San Jose.

Ok, so deployment along streets. What else?

Gourab Ghatak (IIT Delhi)

RLCP

June 4, 2024

Coverage Footprint from a 5G Lamppost

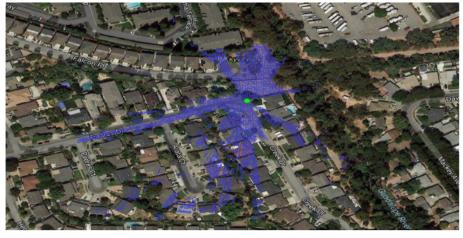


Figure: Coverage of a lamp-post mm-wave small cell in San Jose.

Sourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Motivation and History of Line Processes

10/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCF

Networks on Lines - Other Examples

Movement of vehicular nodes.

¹Will be made rigorous in a moment. 11/62

Networks on Lines - Other Examples

- Movement of vehicular nodes.
- Autonomous robots movements:
 - Inspecting underground pipelines.
 - · Movement in warehouses.

¹Will be made rigorous in a moment. 11/62 June 4, 2024 Networks on Lines - Other Examples

- - Movement of vehicular nodes. Autonomous robots movements:
 - Inspecting underground pipelines.
 - Movement in warehouses.
 - Underground metro/railway system.

¹Will be made rigorous in a moment. 11/62 Gourab Ghatak (IIT Delhi) June 4, 2024

Networks on Lines - Other Examples

- Movement of vehicular nodes.
- Autonomous robots movements:
 - Inspecting underground pipelines.
 - Movement in warehouses.
- Underground metro/railway system.
- Network of rivers.

¹Will be made rigorous in a moment. 11/62

Networks on Lines - Other Examples

- Movement of vehicular nodes.
- Autonomous robots movements:
 - Inspecting underground pipelines.
 - Movement in warehouses.
- Underground metro/railway system.
- Network of rivers.

Can be modeled, studied, and characterized using line processes¹ (one candidate): a random collection of lines in, e.g., Euclidean space (e.g., a plane).

¹Will be made rigorous in a moment. 11/62 June 4, 2024 Networks on Lines - Other Examples

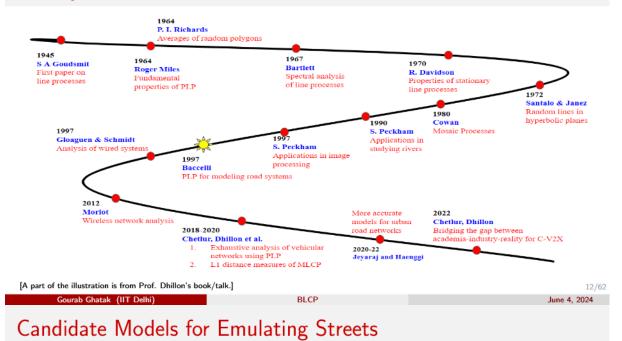
- Movement of vehicular nodes.
- Autonomous robots movements:
 - Inspecting underground pipelines.
 - Movement in warehouses.
- Underground metro/railway system.
- Network of rivers.

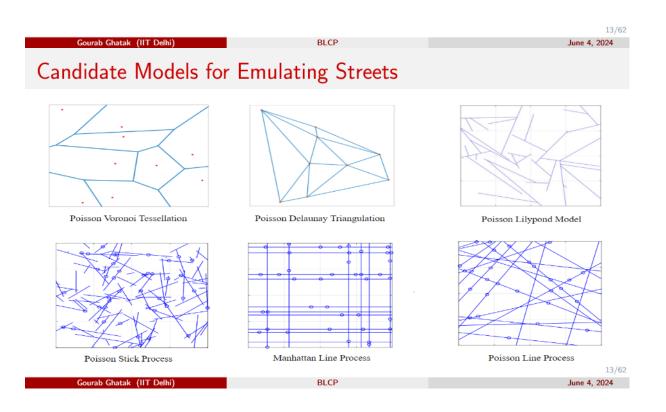
Can be modeled, studied, and characterized using line processes¹ (one candidate): a random collection of lines in, e.g., Euclidean space (e.g., a plane). Let's look at some history...

Will be made rigorous in a moment. 11/62 Gourab Ghatak (IIT Delhi) June 4, 2024

11-12-2024, 17:54 6 of 46

History of Line Process Research





Firefox

Some Observations

 Homogeneity → characterization is motion-invariant - one can study the network from the perspective of a single point, e.g., at the origin.

14/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Some Observations

- Homogeneity → characterization is motion-invariant one can study the network from the perspective of a single point, e.g., at the origin.
- From the perspective of a single city, the street networks are inhomogeneous denser streets in the city center, not so much in suburbs.

14/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Some Observations

- Homogeneity → characterization is motion-invariant one can study the network from the perspective of a single point, e.g., at the origin.
- From the perspective of a single city, the street networks are inhomogeneous denser streets in the city center, not so much in suburbs.
- Solutions need to be adaptive -
 - MAC protocols should adapt based on the location.
 - Deployment planning must take into account the location e.g., where is the nearest eV charging point? nearest bus stop?
 - V2X load is directly dependent on the length of streets in a coverage area; load-balancing and cell-breathing need to be adaptive.
 - ...

14/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLC

8 of 46

Emulating Non-Homogeneous Streets

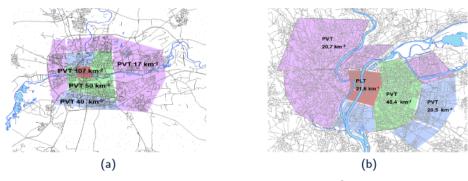
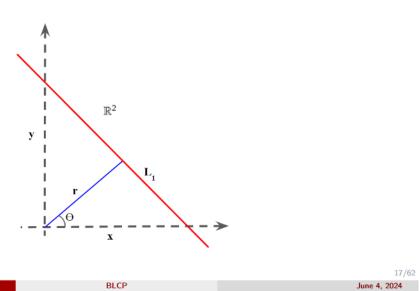


Figure: (a) PVT and (b) PVT + PLT models for fitting for streets of Lyon ². For a PVT, the model parameter is the density of the underlying Poisson point process (PPP).

²C. Gloaguen, "Modelisation macroscopique geometrique des reseaux d'acces en telecommunication," Presentation at Soci´et´e de Math´ematiques Appliqu´ees et Industrielles. Link: http://smai.emath.fr/spip/IMG/ppt, 2010 15/62 June 4, 2024

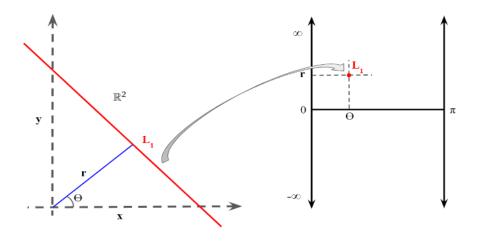
Binomial Line Processes

16/62 June 4, 2024 Line Process - Construction



17/62

Line Process - Construction

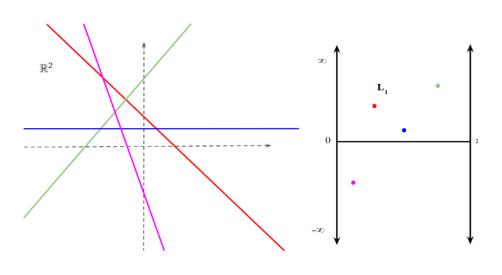


18/62

19/62 June 4, 2024

20/62

Line Process - Construction



Binomial Line Process - Construction



• **Key:** Fixed number of points (n_B) , uniformly distributed in a closed compact set $\mathcal{D} \triangleq [-R, R] \times [0, \pi)$.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

10 of 46

BLP - Definition

Binomial Line Process (BLP)

A binomial line process (BLP) $\mathcal L$ is a collection of n_B lines in the two-dimensional Euclidean plane. Formally,

$$\mathcal{L} \subset Q \triangleq \bigcup_{r \in [-R,R], \theta \in [0,\pi)} \{ (x,y) \in \mathbb{R}^2 \colon x \cos \theta + y \sin \theta = r \}. \tag{1}$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

BLP - Definition

Binomial Line Process (BLP)

A BLP \mathcal{L} is a collection of n_B lines in the two-dimensional Euclidean plane. Formally,

$$\mathcal{L} \subset Q \triangleq \bigcup_{r \in [-R,R], \theta \in [0,\pi)} \{ (x,y) \in \mathbb{R}^2 \colon x \cos \theta + y \sin \theta = r \}. \tag{1}$$

ullet We will call ${\mathcal D}$ the generating set or the domain set of ${\mathcal L}$, and

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

BLP - Definition

Binomial Line Process (BLP)

A BLP \mathcal{L} is a collection of n_B lines in the two-dimensional Euclidean plane. Formally,

$$\mathcal{L} \subset Q \triangleq \bigcup_{r \in [-R,R], \theta \in [0,\pi)} \{ (x,y) \in \mathbb{R}^2 \colon x \cos \theta + y \sin \theta = r \}. \tag{1}$$

- ullet We will call ${\mathcal D}$ the generating set or the domain set of ${\mathcal L}$, and
- A point $(\theta_i, r_i) \in \mathcal{D}$, corresponding to a line $L_i \in \mathcal{L}$, the generating point of L_i .

21/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCF

BLP - Definition

Binomial Line Process (BLP)

A BLP \mathcal{L} is a collection of n_B lines in the two-dimensional Euclidean plane. Formally,

$$\mathcal{L} \subset Q \triangleq \bigcup_{r \in [-R,R], \theta \in [0,\pi)} \{ (x,y) \in \mathbb{R}^2 \colon x \cos \theta + y \sin \theta = r \}. \tag{1}$$

- ullet We will call ${\mathcal D}$ the generating set or the domain set of ${\mathcal L}$, and
- A point $(\theta_i, r_i) \in \mathcal{D}$, corresponding to a line $L_i \in \mathcal{L}$, the generating point of L_i .
- Generating points form a BPP in \mathcal{D} .

(a)

Gourab Ghatak (IIT Delhi)

BLCP

BLCP

June 4, 2024

Instance Visualization

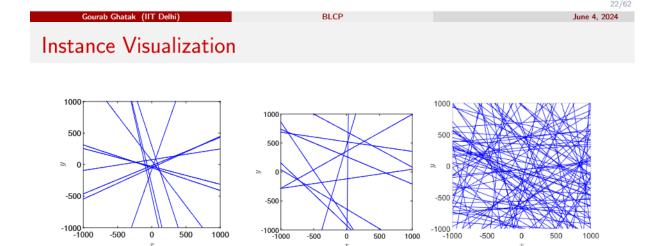


Figure: (a) A BLP with $n_{\rm B}=10$ and R=100, (b) A realization of a PLP conditioned on 10 lines generated in the window of interest, and (c) A PLP whose underlying PPP has intensity $\frac{n_{\rm B}}{2\pi R}$ with $n_{\rm B}=10$ and R=100. Note: Here R is the radius of the circle in which BLP lines are generated.

(b)

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

12 of 46 11-12-2024, 17:54

(c)

22/62

Non-stationarity

• BLP is a non-stationary process.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Non-stationarity

- BLP is a non-stationary process.
- the statistics of the BLP cannot be characterized from the perspective of a single typical point located, say, at the origin.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

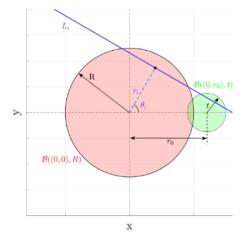
Non-stationarity

- BLP is a non-stationary process.
- the statistics of the BLP cannot be characterized from the perspective of a single typical point located, say, at the origin.
- However, isotropic → the properties as seen from a point depends only on its distance from the origin and not its orientation.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Non-stationarity

- BLP is a non-stationary process.
- the statistics of the BLP cannot be characterized from the perspective of a single typical point located, say, at the origin.
- However, isotropic → the properties as seen from a point depends only on its distance from the origin and not its orientation.
- Accordingly, without loss of generality, let us consider a test point located at $(0, r_0)$.



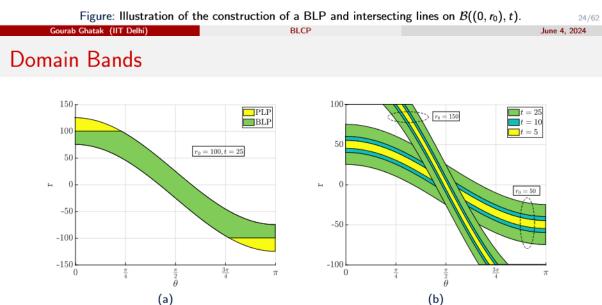


Figure: (a) Illustration of the domain bands for a PLP and a BLP with R = 100. (b) Domain bands for different values of t and r_0 . Here R = 100. Note that when $r_0 + t \le R$, the domain bands for PLP and BLP coincide.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

14 of 46 11-12-2024, 17:54

25/62

Area of the Domain Band

Theorem

The area of the domain band $\mathcal{D}_{\mathrm{B}}(r_0,t)$ for a BLP is

$$A_{\mathrm{D}}(r_{0},t) = \begin{cases} 2\pi t; & \text{for } r_{0}+t \leq R \\ 2\pi t - 2r_{0}\sqrt{1 - \left(\frac{R-t}{r_{0}}\right)^{2}} + 2\left(R-t\right)\cos^{-1}\left(\frac{R-t}{r_{0}}\right); & \text{for } r_{0}+t > R \text{ and } r_{0}-t \leq R \\ 2\pi t - 2r_{0}\left(\sqrt{1 - \left(\frac{R-t}{r_{0}}\right)^{2}} - \sqrt{1 - \left(\frac{R+t}{r_{0}}\right)^{2}}\right) + 2\left(R-t\right)\cos^{-1}\left(\frac{R-t}{r_{0}}\right) \\ -2\left(R+t\right)\cos^{-1}\left(\frac{R+t}{r_{0}}\right); & \text{for } r_{0}-t \geq R. \end{cases}$$

$$(2)$$

Gourab Ghatak (IIT Delhi

BLCF

June 4, 2024

Distance to the nearest street?

Corollary

[Void Probability] The probability that no line of the BLP intersects with $\mathcal{B}((0, r_0), t)$ is

$$\mathcal{V}_{\mathrm{BLP}}(n_{\mathrm{B}},\mathcal{B}((0,r_{0}),t)) = \left(1 - \frac{A_{\mathrm{D}}(r_{0},t)}{2\pi R}\right)^{n_{\mathrm{B}}},$$

where, $n_{
m B}$ is the number of lines of the BLP ${\cal L}$ and $A_{
m D}$ is area of the domain bands.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Distance to the nearest street?

Corollary

[Void Probability] The probability that no line of the BLP intersects with $\mathcal{B}((0, r_0), t)$ is

$$\mathcal{V}_{\mathrm{BLP}}(n_{\mathrm{B}},\mathcal{B}((0,r_{0}),t)) = \left(1 - \frac{A_{\mathrm{D}}(r_{0},t)}{2\pi R}\right)^{n_{\mathrm{B}}},$$

where, $n_{\rm B}$ is the number of lines of the BLP $\mathcal L$ and $A_{\rm D}$ is area of the domain bands.

Corollary

The CDF of the distance to the nearest line of the BLP from a test point at $(0, r_0)$ is,

$$F_d(t) = 1 - V_{\text{BLP}}(n_{\text{B}}, \mathcal{B}((0, r_0), t)).$$

27/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCP

Firefox

about:blank

Line Length Density

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Line Length Density

Definition

The line length measure is

$$\mathcal{R}(S) = n_{\mathrm{B}} \mathbb{E}(|L \cap S|_1), \quad S \subset \mathbb{R}^2,$$

where $|\cdot|_1$ is the Lebesgue measure in one dimension and L is a line of the BLP. The corresponding radial density is

$$\rho(r) = \lim_{u \to 0} \frac{\mathcal{R}\big(\mathcal{B}((0,0), r+u) \setminus \mathcal{B}((0,0), r)\big)}{\pi \left(2u + u^2\right)}.$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Line Length Density

Definition

The line length measure is

$$\mathcal{R}(S) = n_{\mathrm{B}} \mathbb{E}(|L \cap S|_1), \quad S \subset \mathbb{R}^2,$$

where $|\cdot|_1$ is the Lebesgue measure in one dimension and L is a line of the BLP. The corresponding radial density is

$$\rho(r) = \lim_{u \to 0} \frac{\mathcal{R}\big(\mathcal{B}((0,0), r+u) \setminus \mathcal{B}((0,0), r)\big)}{\pi \left(2u + u^2\right)}.$$

The line length measure follows by integrating $\rho(r)$, i.e.,

$$\mathcal{R}(S) = \int_S
ho(|\mathbf{x}|) \; \mathrm{d}\mathbf{x}, \quad S \subset \mathbb{R}^2.$$

Gourab Ghatak (IIT Delhi)

BLCF

28/62 June 4, 2024

Line Length Density

Theorem

For a BLP generated by $n_{\rm B}$ lines within a disk of radius R,

$$\rho(r) = \begin{cases} \frac{n_{\rm B}}{2R}, & \text{if } r \leq R \\ \frac{n_{\rm B}}{\pi R} \arcsin\left(\frac{R}{r}\right) & \text{if } r > R. \end{cases}$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

29/62

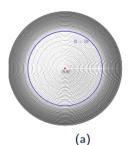
about:blank

Line Length Density

Theorem

For a BLP generated by $n_{\rm B}$ lines within a disk of radius R,

$$\rho(r) = \begin{cases} \frac{n_{\rm B}}{2R}, & \text{if } r \leq R \\ \frac{n_{\rm B}}{\pi R} \arcsin\left(\frac{R}{r}\right) & \text{if } r > R. \end{cases}$$



0.06 0.04 0.02 0 40 60 80 100

Figure: (a) Ratio of the line length measure to the area in concentric annuli of equal width w=2. Here, R=50. (b) Line length density $\rho(r)$ for R=50 and $n_{\rm B}=10$.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Intersection Density

June 4, 2024

30/62

Intersection Density

Theorem

The intersection density for a PLP with density λ_{PPP} is

$$\rho_{\rm P}(\lambda_{\rm PPP}) = \pi \lambda_{\rm PPP}^2.$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

30/62

Intersection Density

Theorem

The intersection density for a PLP with density λ_{PPP} is

$$\rho_{\rm P}(\lambda_{\rm PPP}) = \pi \lambda_{\rm PPP}^2.$$

Theorem

The radial intersection density at a distance r from the origin for a BLP generated by $n_{\rm B}$ lines within a disk of radius R is

$$\rho_{\times}(r) = \begin{cases} \frac{n_{\mathrm{B}}(n_{\mathrm{B}}-1)}{4\pi R^2}, & \text{if } r \leq R, \\ \frac{n_{\mathrm{B}}(n_{\mathrm{B}}-1)}{4\pi^2 R^2 r} \left(2r \arcsin\left(\frac{R}{r}\right) - \frac{2R}{r} \sqrt{r^2 - R^2}\right) & \text{if } r > R. \end{cases}$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Radial Intersection Density: Proof

- Let $S = \mathcal{B}((0,0),t)$, and consider L_0 generated at $(0,r_0)$ where $0 \le r_0 \le \min\{t,R\}$.
 - ullet First, we determine the domain band $\mathcal{D}_{ imes}$ corresponding to the intersection on L_0
 - For a θ , the range of r that correspond to the domain band is, $\max\left\{-R, \left(r_0\cos\theta \sqrt{t^2 r_0^2}\sin\theta\right)\right\} \le r_i \le \min\left\{R, \left(r_0\cos\theta + \sqrt{t^2 r_0^2}\sin\theta\right)\right\}.$
 - For t > R, the domain band gets clipped to R (upper) and -R (lower) limits

$$A_{D_{ imes}}(t) = egin{cases} \pi t, & ext{if } t \leq R, \ rac{2}{R} \Big(t^2 rcsinig(rac{R}{t}ig) + 2R^2 rccosig(rac{R}{t}ig) - \ \sqrt{t^2 - R^2} \Big) & ext{if } t > R. \end{cases}$$

31/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCP

18 of 46

Radial Intersection Density: Proof

- Accordingly, the probability that a line intersects L_0 within S is obtained as $\mathcal{P}_{\times}(t) = \frac{A_{D_{\times}}(t)}{2\pi \min\{t,R\}}.$
- Now, let us assume that k lines are generated in S. Each of these intersects L_0 with probability $\mathcal{P}_{\times}(t)$. As a result, the average number of intersections on L_0 within S from the k lines is

$$\mathcal{N}' = \sum_{j=0}^k j \binom{k}{j} \left(\mathcal{P}_{\times}(t \mid t \leq R) \right)^j \left(1 - \mathcal{P}_{\times}(t \mid t \leq R)^{k-j} = \frac{k}{2}.$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

32/62

Radial Intersection Density: Proof

Finally, in order to determine the average number of intersections on all the lines within S, we take the expectation over the number of lines generated within S. This is evaluated as

$$\mathcal{N}_{1} = \sum_{k=0}^{n_{\mathrm{B}}-1} \underbrace{\binom{n_{\mathrm{B}}}{k+1}}_{T_{1}} \underbrace{\left(\frac{t}{R}\right)^{k+1} \left(1 - \frac{t}{R}\right)^{n_{\mathrm{B}}-k-1}}_{T_{2}} \underbrace{\frac{k}{2}}_{T_{3}} \times \underbrace{(k+1)}_{T_{4}} \times \underbrace{\frac{1}{2}}_{T_{5}} = \frac{n_{\mathrm{B}}(n_{\mathrm{B}}-1)}{4} \left(\frac{t}{R}\right)^{2}.$$

$$\tag{3}$$

Similarly, for t > R

$$\mathcal{N}_{2} = \sum_{k_{1}=0}^{n_{B}-1} k_{1} \mathcal{P}_{\times}(t \mid t > R)$$

$$= \frac{n_{B}(n_{B}-1)}{2\pi R^{2}} \times \left(t^{2} \arcsin\left(\frac{R}{t}\right) + 2R^{2} \arccos\left(\frac{R}{t}\right) - R\sqrt{t^{2}-R^{2}}\right). \tag{4}$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Intersection Density

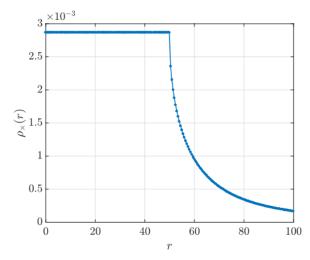


Figure: Intersection density for R=50 and $n_{\rm B}=10$.

34/62

Gourab Ghatak (IIT Delhi)

BLCI

June 4, 2024

Highlights of the Properties

• The line length density as well as the density of intersections remain constant at $\frac{n_{\rm B}}{2R}$ for $r \leq R$ and then decreases as $\mathcal{O}(1/r)$ as $r \to \infty$.

35/62 June 4, 2024

Highlights of the Properties

- The line length density as well as the density of intersections remain constant at $\frac{n_{\rm B}}{2R}$ for $r \leq R$ and then decreases as $\mathcal{O}(1/r)$ as $r \to \infty$.
- Other results skipped: distance to the nearest intersection.

Gourah Ghatak (IIT Delhi) BI CP June 4, 2024

Binomial Line Cox Process

36/62 June 4, 2024

Gourab Ghatak (IIT Delhi

BLCF

BLCP - Construction

• On each L_i of \mathcal{L} , define an independent 1D PPP Φ_i with intensity λ .

Gourab Ghatak (IIT Delhi)

BLCP - Construction

- On each L_i of \mathcal{L} , define an independent 1D PPP Φ_i with intensity λ .
- A BLCP Φ, is ∪Φ_i.

Gourab Ghatak (IIT Delhi)

BLCP June 4, 2024

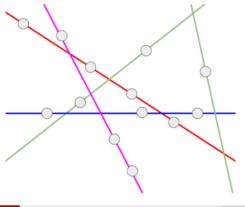
BLCP - Construction

- On each L_i of \mathcal{L} , define an independent 1D PPP Φ_i with intensity λ .
- A BLCP Φ, is ∪Φ_i.
- Thus the BLCP is a doubly-stochastic or Cox process of random points defined on random lines.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

BLCP - Construction

- On each L_i of \mathcal{L} , define an independent 1D PPP Φ_i with intensity λ .
- A BLCP Φ, is ∪Φ_i.
- Thus the BLCP is a doubly-stochastic or Cox process of random points defined on random lines.



Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

37/62

Nearest BLCP Point - Chord Length

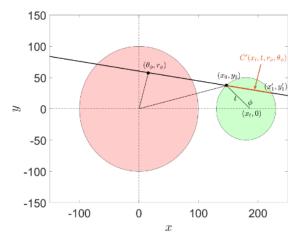


Figure: Illustration of the chord length $C'(x_t, t, r_{\phi}, \theta_{\phi})$.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Void Probability

Theorem

The probability that the disk $\mathcal{B}((0, r_0), t)$ contains no points of Φ is given by

$$\mathcal{V}_{BLCP}(n_{\mathrm{B}}, \mathcal{B}((0, r_{0}), t)) = \left[\frac{1}{2\pi R} \iint_{\mathcal{D}(r_{0}, t)} \underbrace{\exp(-\lambda C(\theta, r))}_{\mathcal{D}_{PPP}(Chord\ Length)} dr d\theta\right]^{n_{\mathrm{B}}}, \tag{5}$$

where,

$$C(\theta, r) = \begin{cases} 2\sqrt{t^2 - (r_0 \cos \theta - r)^2}; & t \ge |r_0 \cos \theta - r|, \\ 0; & otherwise, \end{cases}$$
 (6)

is the length of the chord created by a line corresponding to $(\theta, r) \in \mathcal{D}$ in the disk $\mathcal{B}((0, r_0), t)$.

39/62

Gourab Ghatak (IIT Delhi)

BLCF

June 4, 2024

Void Probability

Corollary

[Distance Distribution] Following the void probability, the distance distribution of the nearest BLCP point from the test point $(0, r_0)$ is

$$F_{d_1}(t) = 1 - \mathcal{V}_{BLCP}(n_{\rm B}, \mathcal{B}((0, r_0), t)).$$

40/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Void Probability

Corollary

[Distance Distribution] Following the void probability, the distance distribution of the nearest BLCP point from the test point $(0, r_0)$ is

$$F_{d_1}(t) = 1 - \mathcal{V}_{BLCP}\left(n_{\mathrm{B}}, \mathcal{B}((0, r_0), t)\right).$$

From a wireless network perspective where the locations of the APs are modeled as points of a BLCP, the above result characterizes the distance distribution to the nearest AP.

40/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Palm Perspective of the BLCP

41/62

June 4

Firefox

Palm Perspective of the BLCP

Lemma

For a BLCP Φ defined on a BLP $\mathcal P$ with $n_{\mathrm B}$ lines, we have

$$\mathbb{P}(\Phi \in Y \mid \mathbf{x} \in \Phi) = \mathbb{P}(\Phi_{n_{B}-1} \cup \Phi_{\mathbf{x}} \cup \{\mathbf{x}\} \in \mathbf{Y}), \tag{7}$$

where Φ_x is a 1D PPP on a randomly oriented line that passes through x.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

41/62

about:blank

Palm Perspective of the BLCP

Lemma

For a BLCP Φ defined on a BLP $\mathcal P$ with $n_{\mathrm B}$ lines, we have

$$\mathbb{P}(\Phi \in Y \mid \mathbf{x} \in \Phi) = \mathbb{P}(\Phi_{n_{B}-1} \cup \Phi_{\mathbf{x}} \cup \{\mathbf{x}\} \in \mathbf{Y}), \tag{7}$$

where Φ_x is a 1D PPP on a randomly oriented line that passes through x.

Necessary to characterize the statistics of the performance metrics conditioned on an event that a node, e.g., a transmitter or an AP is located at a given point.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Palm Perspective of the BLCP

Lemma

For a BLCP Φ defined on a BLP \mathcal{P} with $n_{\rm B}$ lines, we have

$$\mathbb{P}(\Phi \in Y \mid \mathbf{x} \in \Phi) = \mathbb{P}(\Phi_{n_{B}-1} \cup \Phi_{\mathbf{x}} \cup \{\mathbf{x}\} \in \mathbf{Y}), \tag{7}$$

where Φ_x is a 1D PPP on a randomly oriented line that passes through x.

Necessary to characterize the statistics of the performance metrics conditioned on an event that a node, e.g., a transmitter or an AP is located at a given point.

Consider a network - APs ∼ BLCP.

41/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCP

Firefox

Palm Perspective of the BLCP

Lemma

For a BLCP Φ defined on a BLP $\mathcal P$ with $n_{\mathrm B}$ lines, we have

$$\mathbb{P}(\Phi \in Y \mid \mathbf{x} \in \Phi) = \mathbb{P}(\Phi_{n_{B}-1} \cup \Phi_{\mathbf{x}} \cup \{\mathbf{x}\} \in \mathbf{Y}), \tag{7}$$

where Φ_x is a 1D PPP on a randomly oriented line that passes through x.

Necessary to characterize the statistics of the performance metrics conditioned on an event that a node, e.g., a transmitter or an AP is located at a given point.

- Consider a network APs ∼ BLCP.
- If a Rx at the origin associates with a Tx located at x, then the interfering APs are located not only in the other $n_B 1$ lines but also on a line necessarily passing through x.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

41/62

Probability Generating Functional - Definitions

Definition

The **PGFL** of a point process Φ evaluated for a function ν is defined mathematically as the Laplace functional of $-\log \nu$ and is calculated as $\mathbb{E}\left[\prod_{\mathbf{x}\in\Phi}\nu(\mathbf{x})\right]$.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional - Definitions

Definition

The **PGFL** of a point process Φ evaluated for a function ν is defined mathematically as the Laplace functional of $-\log \nu$ and is calculated as $\mathbb{E}\left[\prod_{\mathbf{x}\in\Phi}\nu(\mathbf{x})\right]$.

Characterizes the behavior of any random point function

- Given pollution sources and diffusion models, the expected intensity of pollution at a location.
- Given BS powers, the received power and QoS, etc at a location.
- Given stochastic charge locations, what is the electric field at a location?

42/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional - Definitions

Definition

The **PGFL** of a point process Φ evaluated for a function ν is defined mathematically as the Laplace functional of $-\log \nu$ and is calculated as $\mathbb{E}\left[\prod_{\mathbf{x}\in\Phi}\nu(\mathbf{x})\right]$.

Characterizes the behavior of any random point function

- Given pollution sources and diffusion models, the expected intensity of pollution at a location.
- Given BS powers, the received power and QoS, etc at a location.
- Given stochastic charge locations, what is the electric field at a location?

For a PPP

$$\mathbb{E}\left[\prod_{\mathbf{x}\in\Phi_{PPP}}\nu(\mathbf{x})\right] = \exp\left(-\int_{\mathbb{R}^2} 1 - \nu(\mathbf{x})\Lambda(d\mathbf{x})\right) \tag{8}$$

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional

For a particular r_0 and d_1 ,

• a line is intersecting if $|r_0 \cos \theta - r| \ge d_1$ and non-intersecting otherwise.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional

For a particular r_0 and d_1 ,

• a line is intersecting if $|r_0 \cos \theta - r| \ge d_1$ and non-intersecting otherwise.

Thus, the conditional PGFL of the intersecting and non-intersecting lines (given the nearest BLCP is at d_1) are

$$G_{\rm I}(r_0, d_1) = \frac{1}{A_{\rm D}(r_0, d_1)} \iint_{\mathcal{D}_{\rm B}(0, d_1)} \exp\left(-2\lambda \int_{\sqrt{d_1^2 - (r_0\cos\theta - r)^2}}^{\infty} 1 - f\left(\sqrt{y^2 + (r_0\cos\theta - r)^2}\right) dy\right) dr d\theta,$$

12/62

Gourab Ghatak (IIT Delhi)

June 4, 2024

Probability Generating Functional

For a particular r_0 and d_1 ,

• a line is intersecting if $|r_0 \cos \theta - r| \ge d_1$ and non-intersecting otherwise.

Thus, the conditional PGFL of the intersecting and non-intersecting lines (given the nearest BLCP is at d_1) are

$$G_{\rm I}(r_0, d_1) = \frac{1}{A_{\rm D}(r_0, d_1)} \iint_{\mathcal{D}_{\rm B}(0, d_1)} \exp\left(-2\lambda \int_{\sqrt{d_1^2 - (r_0 \cos \theta - r)^2}}^{\infty} 1 - f\left(\sqrt{y^2 + (r_0 \cos \theta - r)^2}\right) dy\right) dr d\theta,$$

$$G_{\rm NI}(r_0, d_1) = \frac{1}{(2\pi R - A_{\rm D}(r_0, d_1))} \iint_{\mathcal{D}\setminus\mathcal{D}_{\rm B}(0, d_1)} \exp\left(-2\lambda \int_0^{\infty} 1 - f\left(\sqrt{y^2 + (r_0 \cos \theta - r)^2}\right) dy\right) dr d\theta.$$
(9)

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional

The line containing the nearest point intersects the disk $\mathcal{B}((0,0),d_1)$ almost surely. Whereas, the other n_B-1 lines may or may not intersect. Accordingly,

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional

The line containing the nearest point intersects the disk $\mathcal{B}((0,0),d_1)$ almost surely. Whereas, the other $n_{\rm B}-1$ lines may or may not intersect. Accordingly,

$$G(r_{0}, f(\cdot)) \stackrel{(a)}{=} \underbrace{G_{\mathrm{I}}(r_{0}, d_{1})}_{\mathrm{T_{1}}} \sum_{n=0}^{n_{\mathrm{B}}-1} \binom{n_{\mathrm{B}}-1}{n} \underbrace{\left[\left(\frac{A_{\mathrm{D}}(r_{0}, d_{1})}{2\pi R} \times G_{\mathrm{I}}(r_{0}, d_{1})\right)^{n}\right]}_{\mathrm{T_{2}}} \times \underbrace{\left(\left(1-\frac{A_{\mathrm{D}}(r_{0}, d_{1})}{2\pi R}\right) \times G_{\mathrm{NI}}(r_{0}, d_{1})\right)^{n_{\mathrm{B}}-n-1}}_{\mathrm{T_{2}}}$$

44/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional

The line containing the nearest point intersects the disk $\mathcal{B}((0,0),d_1)$ almost surely. Whereas, the other n_B-1 lines may or may not intersect. Accordingly,

$$G(r_0, f(\cdot)) \stackrel{\text{(a)}}{=} \underbrace{G_{\mathrm{I}}(r_0, d_1)}_{\mathrm{T}_1} \sum_{n=0}^{n_{\mathrm{B}}-1} \binom{n_{\mathrm{B}}-1}{n} \left[\underbrace{\left(\frac{A_{\mathrm{D}}(r_0, d_1)}{2\pi R} \times G_{\mathrm{I}}(r_0, d_1)\right)^n}_{\mathrm{T}_2} \times \underbrace{\left(\left(1 - \frac{A_{\mathrm{D}}(r_0, d_1)}{2\pi R}\right) \times G_{\mathrm{NI}}(r_0, d_1)\right)^{n_{\mathrm{B}}-n-1}}_{\mathrm{T}_3} \right]$$

• $T_1 \rightarrow$ line containing the nearest point.

44/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Probability Generating Functional

The line containing the nearest point intersects the disk $\mathcal{B}((0,0),d_1)$ almost surely. Whereas, the other n_B-1 lines may or may not intersect. Accordingly,

$$G(r_0, f(\cdot)) \stackrel{\text{(a)}}{=} \underbrace{G_{\mathrm{I}}(r_0, d_1)}_{\mathrm{T}_1} \sum_{n=0}^{n_{\mathrm{B}}-1} \binom{n_{\mathrm{B}}-1}{n} \underbrace{\left[\left(\frac{A_{\mathrm{D}}(r_0, d_1)}{2\pi R} \times G_{\mathrm{I}}(r_0, d_1)\right)^{n}\right]}_{\mathrm{T}_2} \times \underbrace{\left(\left(1 - \frac{A_{\mathrm{D}}(r_0, d_1)}{2\pi R}\right) \times G_{\mathrm{NI}}(r_0, d_1)\right)^{n_{\mathrm{B}}-n-1}}_{\mathrm{T}_2}\right]}_{\mathrm{T}_2}$$

- T₁ → line containing the nearest point.
- $T_2 \rightarrow$ the probability that a set of *n* lines intersect the disk and the conditional PGFL given that the lines intersect the disk.

Gourab Ghatak (IIT Delhi

BLCP

June 4, 2024

Probability Generating Functional

The line containing the nearest point intersects the disk $\mathcal{B}((0,0),d_1)$ almost surely. Whereas, the other $n_{\rm B}-1$ lines may or may not intersect. Accordingly,

$$G(r_{0}, f(\cdot)) \stackrel{(a)}{=} \underbrace{G_{\mathrm{I}}(r_{0}, d_{1})}_{\mathrm{T}_{1}} \sum_{n=0}^{n_{\mathrm{B}}-1} \binom{n_{\mathrm{B}}-1}{n} \underbrace{\left[\left(\frac{A_{\mathrm{D}}(r_{0}, d_{1})}{2\pi R} \times G_{\mathrm{I}}(r_{0}, d_{1})\right)^{n}\right]}_{\mathrm{T}_{2}} \times \underbrace{\left(\left(1-\frac{A_{\mathrm{D}}(r_{0}, d_{1})}{2\pi R}\right) \times G_{\mathrm{NI}}(r_{0}, d_{1})\right)^{n_{\mathrm{B}}-n-1}}_{\mathrm{T}_{2}}$$

- $T_1 \rightarrow$ line containing the nearest point.
- T₂ → the probability that a set of n lines intersect the disk and the conditional PGFL given that the lines intersect the disk.
- T₃ → corresponds to the probability that a set of n_B − n − 1 lines do not intersect the disk and the conditional PGFL given that the lines do not intersect the disk.

44/62

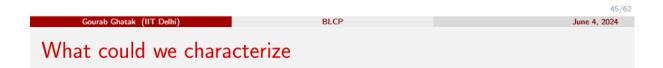
Gourab Ghatak (IIT Delhi

BLC

June 4, 2024

What could we characterize

• Distance to the nearest street as we move away from the city center.



- Distance to the nearest street as we move away from the city center.
- Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).

Gourab Ghatak (IIT Delhi)

BLCP

BLCP

June 4, 2024

What could we characterize

- Distance to the nearest street as we move away from the city center.
- Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).
- Scaling for the density of streets and intersections as we move away from the city center.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

What could we characterize

- Distance to the nearest street as we move away from the city center.
- Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).
- Scaling for the density of streets and intersections as we move away from the city center.
- PGFL characterizes the behavior of any random point function.

45/62 What could we characterize

- Distance to the nearest street as we move away from the city center.
- Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).
- Scaling for the density of streets and intersections as we move away from the city center.
- PGFL characterizes the behavior of any random point function.
- Currently, we are performing a data-driven evaluation of the accuracy of different models.

What could we characterize

- Distance to the nearest street as we move away from the city center.
- Distance to the nearest node on the street (e.g., BS, bus stop, EV charging points).
- Scaling for the density of streets and intersections as we move away from the city center.
- PGFL characterizes the behavior of any random point function.
- Currently, we are performing a data-driven evaluation of the accuracy of different models.

Let's look at an application with meta distributions.

45/62 June 4, 2024

Meta Distribution of the SINR with BLCP Nodes

• For a random variable, Z, $\mathbb{E}[Z]$ is the mean of Z.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, $\mathbb{E}[Z]$ is the mean of Z.
 - Useful but not a complete picture/description about Z.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, E[Z] is the mean of Z.
 - Useful but not a complete picture/description about Z.
- Introduce z to compare against Z

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, $\mathbb{E}[Z]$ is the mean of Z.
 - Useful but not a complete picture/description about Z.
- Introduce z to compare against Z
 - Forms the family of random variables $\mathbb{1}(Z > z)$.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, E[Z] is the mean of Z.
 - Useful but not a complete picture/description about Z.
- Introduce z to compare against Z
 - Forms the family of random variables $\mathbb{1}(Z > z)$.
 - The mean of this family, E[1 (Z > z)] gives the distribution of Z.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, E[Z] is the mean of Z.
 - Useful but not a complete picture/description about Z.
- Introduce z to compare against Z
 - Forms the family of random variables $\mathbb{1}(Z > z)$.
 - The mean of this family, E[1 (Z > z)] gives the distribution of Z.
 - If Z does not depend on any other randomness, the above provides a complete picture of Z.

47/62

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, $\mathbb{E}[Z]$ is the mean of Z.
 - Useful but not a complete picture/description about Z.
- Introduce z to compare against Z
 - Forms the family of random variables 1 (Z > z).
 - The mean of this family, E [1 (Z > z)] gives the distribution of Z.
 - If Z does not depend on any other randomness, the above provides a complete picture of Z.
 - The probability of any event can be expressed by adding or subtracting these elementary probabilities.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

Refresher On Indicators and Conditional Expectations

- For a random variable, Z, E[Z] is the mean of Z.
 - Useful but not a complete picture/description about Z.
- Introduce z to compare against Z
 - Forms the family of random variables $\mathbb{1}(Z > z)$.
 - The mean of this family, E[1 (Z > z)] gives the distribution of Z.
 - If Z does not depend on any other randomness, the above provides a complete picture of Z.
 - The probability of any event can be expressed by adding or subtracting these elementary probabilities.
- However, if Z is a function of other sources of randomness, then $\mathbb{E}\left[\mathbb{1}\left(Z>z\right)\right]$ does not reveal how the statistics of Z depend on those of the individual random elements.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Meta-Distributions

• Let us take the example of Z = f(X, Y) where X and Y are independent.

1. 2024

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Meta-Distributions

- Let us take the example of Z = f(X, Y) where X and Y are independent.
- Then, to discern how X and Y individually affect Z, we need to add a second parameter, say x, to extend the distribution to the meta distribution:

48/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Meta-Distributions

- Let us take the example of Z = f(X, Y) where X and Y are independent.
- Then, to discern how X and Y individually affect Z, we need to add a second parameter, say x, to extend the distribution to the meta distribution:

$$\bar{F}_{\|Z|Y\|}(z,x) = \mathbb{E}\left[\mathbb{1}\left(\mathbb{E}\left[\mathbb{1}\left(Z > z\right)|Y\right] > x\right)\right] \tag{10}$$

48/62

Gourab Ghatak (IIT Delhi)

BLCF

June 4, 2024

Meta-Distributions

- Let us take the example of Z = f(X, Y) where X and Y are independent.
- Then, to discern how X and Y individually affect Z, we need to add a second parameter, say x, to extend the distribution to the meta distribution:

$$\bar{F}_{\mathbb{Z}|Y\mathbb{I}}(z,x) = \mathbb{E}\left[\mathbb{1}\left(\mathbb{E}\left[\mathbb{1}\left(Z > z\right)|Y\right] > x\right)\right] \tag{10}$$

or

$$\bar{F}_{\|Z|Y\|}(z,x) = \mathbb{P}\left(\mathbb{P}\left(Z > z|Y\right) > x\right) \tag{11}$$

48/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Meta-Distributions

- Let us take the example of Z = f(X, Y) where X and Y are independent.
- Then, to discern how X and Y individually affect Z, we need to add a second parameter, say x, to extend the distribution to the meta distribution:

$$\bar{F}_{\mathbb{Z}|Y\mathbb{I}}(z,x) = \mathbb{E}\left[\mathbb{1}\left(\mathbb{E}\left[\mathbb{1}\left(Z > z\right)|Y\right] > x\right)\right] \tag{10}$$

or

$$\bar{F}_{\llbracket Z|Y\rrbracket}(z,x) = \mathbb{P}\left(\mathbb{P}\left(Z > z|Y\right) > x\right) \tag{11}$$

 Hence the meta distribution (MD) is defined by first conditioning on part of the randomness.

48/6

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Meta-Distributions

- Let us take the example of Z = f(X, Y) where X and Y are independent.
- Then, to discern how X and Y individually affect Z, we need to add a second parameter, say x, to extend the distribution to the meta distribution:

$$\bar{F}_{\llbracket Z|Y \rrbracket}(z,x) = \mathbb{E}\left[\mathbb{1}\left(\mathbb{E}\left[\mathbb{1}\left(Z > z\right)|Y\right] > x\right)\right] \tag{10}$$

or

$$\bar{F}_{\|Z|Y\|}(z,x) = \mathbb{P}\left(\mathbb{P}\left(Z > z|Y\right) > x\right) \tag{11}$$

- Hence the meta distribution (MD) is defined by first conditioning on part of the randomness.
 - It has two parameters, the distribution has one parameter, and the average has zero parameters.

48/62

Gourab Ghatak (IIT Delhi)

BLCI

June 4, 2024

Natural Progression and Back

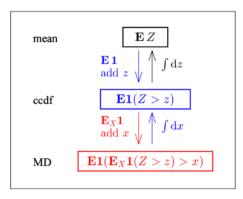
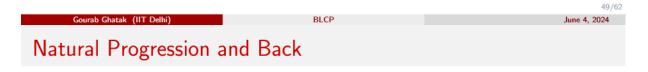


Figure: Going back and forth between mean, CCDF, and MD.



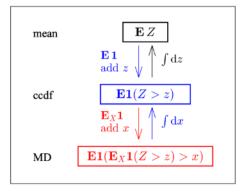
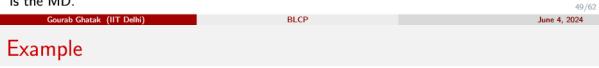


Figure: Going back and forth between mean, CCDF, and MD.

Let $U = \mathbb{P}(Z > z | Y)$. Then, the mean of U is the distribution of Z and the distribution of U is the MD.



Let us consider

$$Z = \frac{X}{Y}$$

where $X \sim \text{exponential}(\lambda_X)$ and $Y \sim \text{exponential}(\lambda_Y)$.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

36 of 46 11-12-2024, 17:54

50/62

Example

Let us consider

$$Z = \frac{X}{Y}$$

where $X \sim \text{exponential}(\lambda_X)$ and $Y \sim \text{exponential}(\lambda_Y)$.

• $\mathbb{P}(Z>z)$?

$$\frac{\mu_{Y}}{z\mu_{X}+\mu_{Y}}$$

Gourab Ghatak (IIT Delhi)

BLCF

June 4, 2024

50/62

Example

Let us consider

$$Z = \frac{X}{Y}$$

where $X \sim \text{exponential}(\lambda_X)$ and $Y \sim \text{exponential}(\lambda_Y)$.

• $\mathbb{P}(Z > z)$?

$$\frac{\mu_{Y}}{z\mu_{X} + \mu_{Y}}$$

• $\bar{F}_{\llbracket Z|Y\rrbracket}(z,x)$?

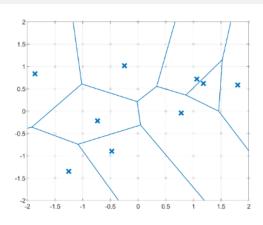
$$1 - x^{\frac{\mu_Y}{z\mu_X}} \tag{12}$$

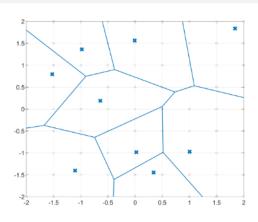
Gourab Ghatak (IIT Delhi)

BLCP

ine 4. 2024

Example in a Wireless Network





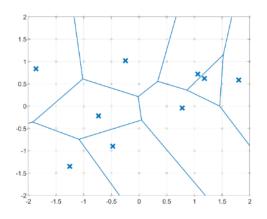
51/62

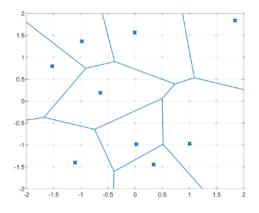
June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCP

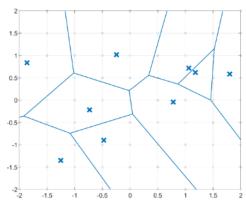
Example in a Wireless Network

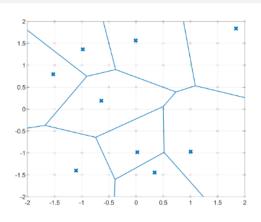




• PPP \implies nearest BS at distance at \sqrt{Y} where, $Y \sim$ exponential $(\pi \lambda)$.

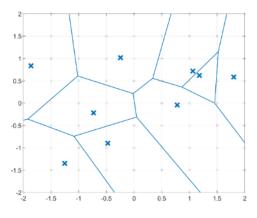
Example in a Wireless Network

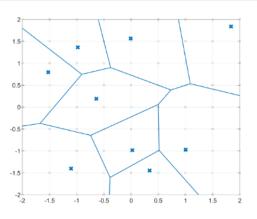




- PPP \implies nearest BS at distance at \sqrt{Y} where, $Y \sim$ exponential $(\pi \lambda)$.
- Fading ⇒ Rx power ~ exponential (1).

Example in a Wireless Network





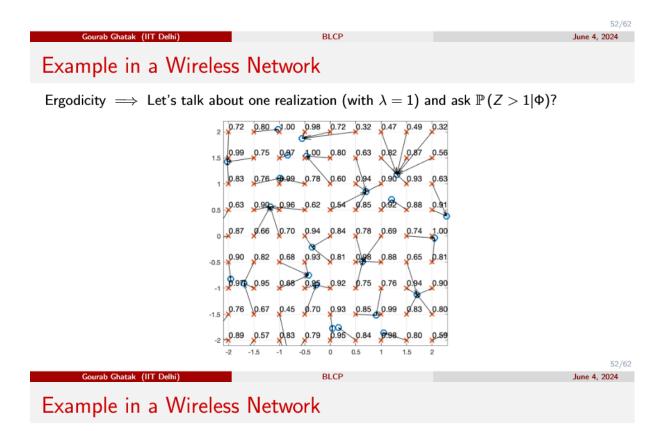
- PPP \implies nearest BS at distance at \sqrt{Y} where, $Y \sim$ exponential $(\pi \lambda)$.
- Fading ⇒ Rx power ~ exponential (1).
- Rx power $Z = \frac{X}{Y}$.

51/62 June 4, 2024

51/62

Example in a Wireless Network

Ergodicity \implies Let's talk about one realization (with $\lambda = 1$) and ask $\mathbb{P}(Z > 1|\Phi)$?



• Histogram of all the user's probabilities?

39 of 46

53/62 June 4, 2024

11-12-2024, 17:54

Example in a Wireless Network

- Histogram of all the user's probabilities?
 - Cannot be answered by merely looking at the ccdf of Z.

53/62 Example in a Wireless Network

- Histogram of all the user's probabilities?
 - Cannot be answered by merely looking at the ccdf of Z.
 - In fact, $\mathbb{P}\left(Z>1\right)=\frac{\pi}{1+\pi}\approx 0.76 \to \text{average of all the numbers}.$

June 4, 2024

Example in a Wireless Network

- Histogram of all the user's probabilities?

 - Cannot be answered by merely looking at the ccdf of Z. In fact, $\mathbb{P}\left(Z>1\right)=\frac{\pi}{1+\pi}\approx0.76\to \text{average of all the numbers.}$
- To know their distribution, we need to consult the MD.

53/62 June 4, 2024

Example in a Wireless Network

- · Histogram of all the user's probabilities?
 - Cannot be answered by merely looking at the ccdf of Z.
 - In fact, $\mathbb{P}\left(Z>1\right)=\frac{\pi}{1+\pi}\approx 0.76 \to \text{average of all the numbers}.$
- To know their distribution, we need to consult the MD.
- In contrast, without the MD, we have no information about the disparity between the users.

53/62

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Example in a Wireless Network

- Histogram of all the user's probabilities?
 - Cannot be answered by merely looking at the ccdf of Z.
 - In fact, $\mathbb{P}(Z>1)=\frac{\pi}{1+\pi}\approx 0.76 \to \text{average of all the numbers}.$
- To know their distribution, we need to consult the MD.
- In contrast, without the MD, we have no information about the disparity between the users.
- Their personal probabilities could all be well concentrated around 0.76, or some could have probabilities near 0 and others near 1.
- Only the MD can reveal the performance of user percentiles, such as the "5% user" performance, which is the performance that 95% of the users achieve but 5% do not.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Let's return to BLCP - SINR Model

• Φ be a point process, the signal-to-interference-plus-noise ratio (SINR) $\xi(r_0)$ is

$$\xi(r_0) = \frac{\xi_0 ||\mathbf{x}_1||^{-\alpha} h_1}{1 + \xi_0 \sum_{\mathbf{x} \in \Phi \setminus \{\mathbf{x}_1\}} ||\mathbf{x}||^{-\alpha} h_{\mathbf{x}}},\tag{13}$$

 ξ_0 is a constant that takes into account the transmit power, AWGN noise, path-loss constant, as well as the transmit and receive antenna gains.

For ease of notation, let us represent $||x_i||$ by d_x .

54/62

11-12-2024, 17:54

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCF

41 of 46

Let's return to BLCP - SINR Model

• Φ be a point process, the SINR $\xi(r_0)$ is

$$\xi(r_0) = \frac{\xi_0 ||\mathbf{x}_1||^{-\alpha} h_1}{1 + \xi_0 \sum_{\mathbf{x} \in \Phi \setminus \{\mathbf{x}_1\}} ||\mathbf{x}||^{-\alpha} h_{\mathbf{x}}},\tag{13}$$

 ξ_0 is a constant that takes into account the transmit power, AWGN noise, path-loss constant, as well as the transmit and receive antenna gains.

For ease of notation, let us represent $||x_i||$ by d_x . Furthermore, let us assume ALOHA (p).

Gourah Ghatak (IIT Delhi)

BLCP

ne 4, 2024

Conditional Success Probability

The conditional success probability, i.e.,

$$P_s(\gamma) = \mathbb{P}(\xi(r_0) \geq \gamma | \Phi)$$

is a random variable due to the random Φ .

Gourab Ghatak (IIT Delhi)

BLCP

lune 4. 2024

Conditional Success Probability

The conditional success probability, i.e.,

$$P_s(\gamma) = \mathbb{P}(\xi(r_0) \geq \gamma | \Phi)$$

is a random variable due to the random Φ .

Its CCDF, called the meta distribution of the SINR, is given as

$$\mathcal{P}_{\mathcal{M}}(\gamma,\beta) = \mathbb{P}\left(P_{s}(\gamma) \ge \beta\right) = \mathbb{P}\left(\mathbb{P}(\xi(r_{0}) \ge \gamma | \Phi) \ge \beta\right). \tag{14}$$

which is a function of two parameters $\gamma \geq 0$ and $0 \leq \beta \leq 1$.

55/62

June 4, 2024

Gourab Ghatak (IIT Delhi)

BLCF

Conditional Success Probability

Let the set of locations of the interfering nodes be denoted by $\mathcal{C} \subset \Phi'$.

$$\begin{split} & P_{s}(\gamma) = \mathbb{P}\left(\xi(\textit{r}_{0}) \geq \gamma \mid \Phi\right) = \mathbb{P}\left[\frac{\xi_{0}\textit{d}_{1}^{-\alpha}\textit{h}_{1}}{1 + \xi_{0} \sum_{\mathbf{x} \in \Phi'} \textit{h}_{\mathbf{x}} \textit{d}_{\mathbf{x}}^{-\alpha} \mathbf{1}(\mathbf{x} \in \mathcal{C})} \geq \gamma \mid \Phi\right] \\ & = \mathbb{P}\left[\textit{h}_{1} > \frac{\gamma + \gamma \xi_{0} \sum_{\mathbf{x} \in \Phi'} \textit{h}_{\mathbf{x}} \textit{d}_{\mathbf{x}}^{-\alpha} \mathbf{1}(\mathbf{x} \in \mathcal{C})}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right] \stackrel{(a)}{=} \mathbb{E}_{\textit{h}_{\mathbf{x}}} \left[\exp\left(\frac{-\gamma - \gamma \xi_{0} \sum_{\mathbf{x} \in \Phi'} \textit{h}_{\mathbf{x}} \textit{d}_{\mathbf{x}}^{-\alpha} \mathbf{1}(\mathbf{x} \in \mathcal{C})}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right)\right] \\ & = \exp\left(\frac{-\gamma}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right) \mathbb{E}_{\textit{h}_{\mathbf{x}}} \left[\exp\left(\frac{-\gamma \xi_{0} \sum_{\mathbf{x} \in \Phi'} \textit{h}_{\mathbf{x}} \textit{d}_{\mathbf{x}}^{-\alpha} \mathbf{1}(\mathbf{x} \in \mathcal{C})}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right)\right] \\ & = \exp\left(\frac{-\gamma}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right) \left(\prod_{\mathbf{x} \in \Phi'} \textit{p} \mathbb{E}_{\textit{h}_{\mathbf{x}}} \exp\left(\frac{-\gamma \xi_{0}\textit{d}_{\mathbf{x}}^{-\alpha}\textit{h}_{\mathbf{z}}}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right) + 1 - p\right) \\ & \stackrel{(b)}{=} \exp\left(\frac{-\gamma}{\xi_{0}\textit{d}_{1}^{-\alpha}}\right) \left(\prod_{\mathbf{x} \in \Phi'} \frac{\textit{p}}{1 + \frac{\gamma \textit{d}_{\mathbf{x}}^{-\alpha}}{\textit{d}_{1}^{-\alpha}}} + 1 - p\right). \end{split}$$

Gourab Ghatak (IIT Delhi)

BLCF

June 4, 2024

Moments

In general, directly deriving the distribution of the random variable P_s(γ) is most likely impossible.

Gourab Ghatak (IIT Delhi)

BLCP

June 4, 2024

Moments

- In general, directly deriving the distribution of the random variable P_s(γ) is most likely impossible.
- The standard approach to circumvent this challenge is by first deriving its moments and then transforming them to the distribution.

57/62

Gourab Ghatak (IIT Delhi)

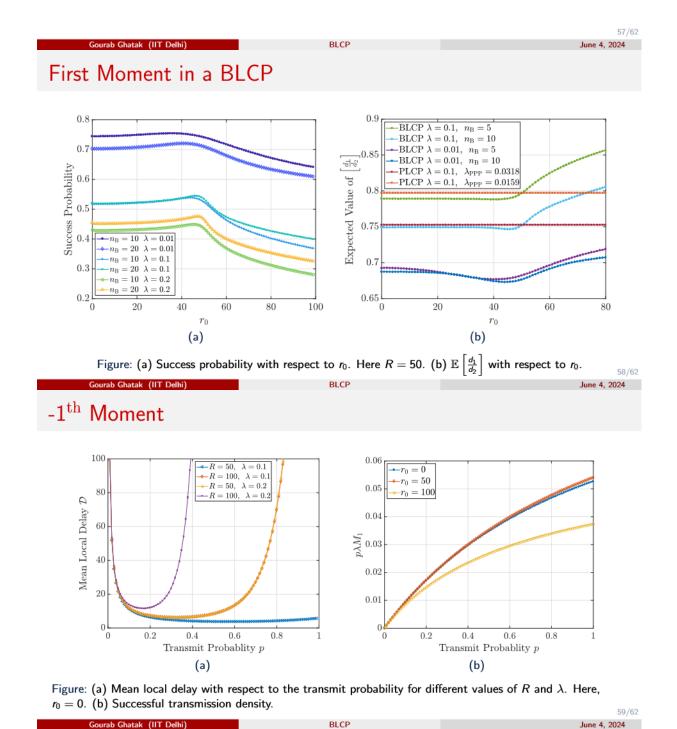
BLCP

June 4, 2024

43 of 46

Moments

- In general, directly deriving the distribution of the random variable P_s(γ) is most likely impossible.
- The standard approach to circumvent this challenge is by first deriving its moments and then transforming them to the distribution.
- Moments reveal key features:
 - First moment: $M_1 = \mathbb{E}_{\Phi}\left[P_{\mathbf{s}}(\gamma)\right] \to \mathsf{standard}$ success probability.
 - -1th moment: $M_{-1} = \mathbb{E}_{\Phi}\left[rac{1}{P_{s}(\gamma)}
 ight]
 ightarrow$ mean local delay.
 - Similarly, variance etc.



Optimal Access Probability

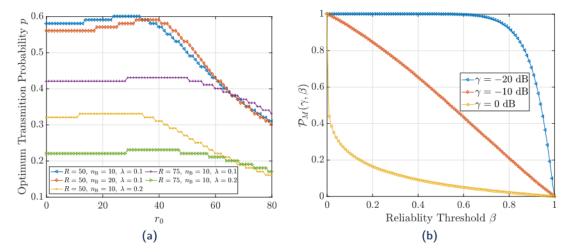


Figure: (a) Optimal transmit probability for minimizing the mean local delay. (b) SINR meta distribution. 60/62

Summary and Conclusions

• BLP and BLCP: New line process and Cox models that take into account the non-homogeneity of lines in a Euclidean plane.

Gourab Ghatak (IIT Delhi)

BLCP

BLCP

Summary and Conclusions

- BLP and BLCP: New line process and Cox models that take into account the non-homogeneity of lines in a Euclidean plane.
- Meta-distributions fine-grained insight into the network; unified framework for a variety of network properties - success probability, mean local delay etc.

Gourab Ghatak (IIT Delhi) BLCP June 4, 2024

45 of 46

Summary and Conclusions

- BLP and BLCP: New line process and Cox models that take into account the non-homogeneity of lines in a Euclidean plane.
- Meta-distributions fine-grained insight into the network; unified framework for a variety of network properties - success probability, mean local delay etc.
- Inhomogeneity in the street network results in the adaptation of optimal wireless protocols
 Tx probability, Load-balancing, automotive radar, etc.
 - Rigorously studied in Part 2.

rab Ghatak (IIT Delhi) BLCP June 4, 2024

Summary and Conclusions

- BLP and BLCP: New line process and Cox models that take into account the non-homogeneity of lines in a Euclidean plane.
- Meta-distributions fine-grained insight into the network; unified framework for a variety of network properties - success probability, mean local delay etc.
- Inhomogeneity in the street network results in the adaptation of optimal wireless protocols
 Tx probability, Load-balancing, automotive radar, etc.
 - Rigorously studied in Part 2.
- Questions:
 - · How accurate is BLP/BLCP? Working on it.
 - Nearest point in the L₁ sense? Percolation questions.
 - · How to integrate the BLP model with existing street models?

Gourab Ghatak (IIT Delhi)

BLCP

BLCP

June 4, 2024

Thanks!

Questions?

Please reach out: gghatak@ee.iitd.ac.in

 Gourab Ghatak (IIT Delhi)
 BLCP
 June 4, 2024

46 of 46